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1 Introduction 

Random dot motion discrimination task has a long history in its usage to understand 

perceptual decision-making (Britten et al., 1992; Gold et al., 2007; Ratcliff et al., 2018). 

Trial-by-trial fluctuations in the behavioural response have been measured with the use 

of a large number of trials, termed internal noise. On the other hand, the variation in 

response on account of the different instances of the same class of stimuli is termed 

external noise. Ratcliff et al. (2018) set out to dissociate the two sources of noise through 

a double-pass experimental manipulation - in which the same stimuli were presented and 

separated by a large number of trials. In the above manipulation, however, the 

dissociation between the two sources of noise was not complete on account of possibly 

multiple confounds like presentation order, short term fluctuations, and so on. 

To isolate the sources of behavioural variability, we used the same RDM 

discrimination task within a test-retest reliability framework. This was accomplished by 

providing a week-long gap between two task sessions with the assumption that any 

learning effects are discounted via the gap while controlling for stimulus presentation 

and trial sequence. This provided us with a measure of the minimal source of variability, 

i.e., within-person variability. 

In the linear modelling tradition, the observed outcome variability can be accounted 

for by the trial and subject variation. Any unexplained variation goes into the residuals or 

what is commonly known as measurement error. However, any shift in the observed 

variable across sessions assuming nothing has changed including the measurement error, 

subject, and stimulus variation can be explained in terms of the random fluctuations in 

the information processing system, i.e., internal noise. 

This internal noise imposes limits on the reliability of the observed phenomenon. This 

has implications in the empirical claims made by individual differences, where the 

observed effect between two populations can be explained purely in terms of internal 

noise if it is less than the observed effect between repeated measurements. If the 

deviation is systematic, it owes its explanation in terms of the external noise - while 

internal noise will shift the observations randomly such that it limits the observed 

consistency between the two repeated sets of measurements. 



 

 

Figure 1. Experiment design. 

 

2 Methods 

Participants performed a random dot motion discrimination task inspired by the Ratcliff 

et al. (2018) paradigm, where the goal is to indicate the direction of apparently moving 

dots i.e., randomly positioned dots presented in succession at a frame rate of 60 Hz 

(Figure 1b). Each dot carries information about the direction of motion depending upon 

whether it is a signal or noise dot in a given frame. The probability that a given dot 

carries the signal is guided by the coherence variable, which changes every trial. The 

identity of a dot (signal/noise) expired every 3 frames to ensure that the decisions are 

based on the global motion of dots. Stimuli consisted of five dots moved at a speed of 4 

pixels/frame in an invisible circular aperture of 100°. 

We used the retest reliability paradigm with the same sequence and position of dots 

for the two main sessions separated by one week as shown in Figure 1a. Before the first 

main session, participants were given 90 practice trials to get familiar with the task. 

Thereafter we measured the accuracy threshold using the 4-up, 1-down staircase method 

(b) Overall task structure. 

(a) General trial structure. 



with 30 reversals. The mean value of the last 6 reversals ± 5% provided us with three 

levels of subjective coherence. 

In the main session, 19 participants (10M, with informed consent, normal or corrected 

to normal vision) were presented with 300 trials at each of the three coherence levels, 

randomly interspersed across 10 blocks of 90 trials each. They were compensated INR 

500 for completing all four sessions. 

 

3 Results 

We measured response time (RT) and accuracy for each trial. Trials with missing 

responses in either session were excluded from both sessions, giving us a mean of 298 

trials per coherence level. 

 A two-way repeated measures ANOVA was conducted with coherence and session as 

the main factors and mean RT as the dependent variable. We observed the main effect of 

Session (F (1,18) = 10.22, p = 0.005, eta  = 0.36) and Coherence (F (2,36) = 11.51, p = 

0.001, eta  = 0.39) with no interaction. 

 Pearson correlation coefficient was used to measure the consistency across the two 

sessions. We observed a correlation coefficient 𝑟 = 0.85 for mean RT and 𝑟 = 0.8 for 

mean accuracy. As discussed before, less than perfect correlation indicates within-person 

random fluctuations. 

 A QQ plot between the repeated measurements of RT quantiles shows the spread on 

account of the random fluctuations between the two sessions. In Figure 2,  this analysis is 

collapsed for hit and error RT distributions. Each dot represents one quantile per 

Figure 2. Divergence between sessions. a) Quantile-Quantile plot between sessions for 

observed Reaction time. b) Divergence as measured by Cohen’s 𝑑  at each quantile. 



coherence and subject. This variation cannot be accounted for by variation in a subject or 

task stimulus. 

 Quantifying this deviation, we measured Cohen's d between the two observations 

using repeated measurements. For every coherence level and subject, the aggregate 

measures for RT and accuracy were computed. The effect size between the repeated set 

is d = 0.23 for mean RT and d = 0.2 for accuracy. 

 Next, we also measured the consistency at the individual trial level. For RTs, 

collapsed across all coherence levels, Pearson correlation yielded 𝑟 = 0.16. For accuracy, 

Cohen's kappa (𝜅 = 0.23) is used for binary choices. 

 

4 Discussion 

Reliability forms the cornerstone of all empirical claims. The test-retest framework gives 

us the means to check how much a test/task measuring a construct of interest (e.g., 

perceptual decision) produces the same or different results at different time points. 

Interpreting empirical claims would then be affected by what this framework would 

show. 

In this study, we aim to characterize the nature and contribution of different sources 

of variability by extending the double-pass manipulation to the retest reliability 

paradigm. The tradition of pushing the observed cognitive behavioural variability to the 

external noise assumes at the heart that there is some perfect encoding of the stimulus by 

a subject that is contaminated by noise. However, consistency measures across repeated 

sets of measurements give us a quantitative measure of the internal noise at the aggregate 

behaviour level, when subject and stimulus variation has been accounted for. 

The presence of within-person random fluctuations provides us with a qualitative tool 

to assess the purely quantitative empirical claims. It provides boundaries to the empirical 

claims, for example, in individual differences studies where the internal noise indicates 

the overlap of two population distributions, which cannot be observed using one set of 

behavioural response elicitation. 

In sum, using the consistency and deviation metrics over the longitudinal observations 

given everything is the same - we show that the notion of ground truth as assumed in the 

study of cognitive science needs to be reformulated with in terms of the within person 

behaviour fluctuations. 
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