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Abstract
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We present a how model for subjective probability distortions observed in people’s be-

haviour in simple frequency estimation tasks and risky decisions [30]. The existing models

[33, 13] of probability distortions assume encoding-based assumptions, inconsistent with

evidence that people can reproduce probabilities veridically when elicited using graphical

methods and motor movements [15, 29]. While in our model, we assume that probabil-

ity distortions occur because people read out probability judgments as biased averages

from working memory contents. Our model demonstrates the inverse S-shaped distortion

of probability judgments in the simulation. Moreover, it also shows a clear relationship

between working memory size and probability distortions, i.e. greater working memory

capacity should lead to greater overweighting of small probabilities, which should lead

to a particular fourfold pattern of risk preference as a function of working memory ca-

pacity. We conducted an experiment with human participants by considering cognitive

ability measurements as a proxy for working memory capacity to validate our predictions.

The model’s predictions are consistent with the empirical results in three of four quad-

rants (HPG, LPG and HPL) and with earlier empirical studies of the relationship between

https://www.linkedin.com/in/ankoju-bhanu-prakash-47a437105/
https://www.cse.iitk.ac.in/users/nsrivast/
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cognitive ability and risk preference. Our results support a role for sampling during as-

sessment of risky prospects, which in turn explains differences in probability distortions

seen across different elicitation methods.
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Chapter 1

Introduction

Consider the following gamble.

(a) You will win a reward of 100 for sure.

(b) There is a 20% chance that you will win a reward of Rs.500.

As per expected utility theory, an option with highest expected value would be preferred

over other options, where the expected value is defined as
∑n

i=1 pixi, where pi is the

probability of the event xi. If we evaluate the above choice under the risk problem, as per

expected utility theory. We can see that both the options are equally good, the expected

value of A is (1*100) $100, and the expected value of B is also ( 0.8 * 0 + 0.2 * 500 ) $100.

So there is no additional value we can yield by choosing one option over the other in the

above gamble. But have you preferred one over the other in the above gamble?

There is a general consensus that people’s decisions differ from the expected utility theory’s

rational decisions in a risky situation [23]. Despite the standard modelling approach, the

expected utility theory does not explain people’s decisions under risk. Prospect theory

[30] is one of the theories proposed that explain the disparity between people’s decisions

and the expected utility theory’s rational decisions in a risky situation.

1.1 Prospect Theory

As per prospect theory, a risky situation’s outcome is evaluated as a relative measure with

some reference point, which is a subjective value. The outcome can be treated as either

1



Chapter 1. Introduction 2

gain or a loss, i.e., if the difference with respect to a reference point is positive, the outcome

is classified as a profit. And similarly, the outcome is classified as a loss if the difference

is negative with respect to the reference point.[30].

Prospect theory hypothesizes following, in gain conditions, the behaviour of the value

function for changes in wealth is concave. For example, winning 200 over 100 appears

more pleasant than winning 1200 over 1000. And in loss conditions, the behaviour of the

value function for changes in wealth is convex. That is, a loss of 200 over 100 seems more

awful than a loss of 1200 over 1000. Furthermore, the value function is multiplied by the

decision weight, which is a subjective probability estimate of the true stated probability

of that event 1. And the weighting function exhibits an inverted S-shaped relationship,

meaning that it tends to underestimate the large probability values and overestimate the

low probability values, as shown in Figure 1.1[30].
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Figure 1.1: This figure demonstrates overestimation of low probabilities and underesti-
mation of high probabilities.

Based on these posits, prospect theory characterises people’s risk attitude in four quadrants

as follows i.e., risk-averse in high probable gain and low probable loss conditions, and risk-

seeking in low probable gain and high probable loss conditions[30, 18].

1v(500)∗π(0.2)+v(0)∗π(0.8) is the value of the prospect in our gamble, where v(x) is the value function
and π(p(x)) is the decision weight for event x.
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1.1.1 Prospect theory parameters correspond to stable individual dif-

ferences in cognition

Given recent advances in our ability to estimate individual-level parameters for prospect

theory [22], Glöckner and Pachur studied temporal consistency of prospect theory’s pa-

rameter values by conducting experiments with risky choice problems across two sessions.

They found that correlations for prospect theory’s parameters within participants across

sessions show a large effect size, suggesting that they correspond to stable individual dif-

ferences in cognition [14].

But what are the cognitive processes that the prospect theory parameters map to? Pachur

et al. investigated how prospect theory parameters can be interpreted with regard to at-

tention allocation using the process tracing paradigm. And they found that the individual

differences in prospect theory’s parameters were systematically related to individual dif-

ferences in attention paid to gains/losses and probability information[23].

Specifically, with respect to probability distortions, Zhang and Maloney proposed the fol-

lowing two-parameter linear form that best fits probability distortions observed in several

studies.

Lo(w(p)) = γ Lo(p) + (1γ) Lo(p0) (1.1)

, where Lo(p) = log ( p
1−p), w(p) is the subjective probability estimate, p is true prob-

ability, p0 is a crossover parameter determining where the inverse S-shaped distortion

function switches from under-weighting to over-weighting , and γ is the linear transform

slope parameter, which also determines the magnitude of probability distortion. Zhang

and Maloney also proposed that assuming this linear log odds representation of probability

in the brain is sufficient to explain the observed probability distortions across various stud-

ies. However, this representational claim is consistent with a large number of theoretical

possibilities, [10, 9, 20] and thus does offer limited process-level understanding.

Goldstein and Rothschild investigated whether people encode distorted probability values

or whether distortions were due to the elicitation process used. They found that people are

able to reproduce probability distributions more accurately when elicited with graphical

methods than standard methods. Suggesting people have accurate representation, but

distortions are induced by the elicitation procedure. Combined with classic studies showing

that frequency encoding in humans is significantly veridical [17], such findings suggest that

cognitive processes during retrieval may be more likely to produce probability distortions.
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1.2 Cognitive ability discerns risk aversion profiles

There are several studies [11, 4, 7], that share a common observation that people with

higher cognitive ability have a risk-seeking attitude in certainty-equivalence experiments

with low probable gains [11, 4] and are risk-averse in high probability gains [11, 7]. In

an example from [11] study, participants who scored high on Cognitive Reflection Test

demonstrated a great tendency to accept risky choices that lead to gains when an expected

utility calculation favoured the risky choice, but crucially, even when it is not [11].

This behaviour of participants is consistent with the viewpoint of probability estimation.

For low probability gains, participants with greater cognitive ability appear to be more

risk-seeking, consistent with over-weighting the low probability gain option. Similarly,

for high probability gains, such participants are more risk-averse, consistent with over-

weighting the low probability non-gain option.
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Figure 1.2: Risk sensitivity increases with measures of cognitive ability, as described
in a number of behavioural studies. Multiple measures of risk preference and cognitive
ability have been used in different studies. This figure plots the expected variation in the
coefficient of relative risk aversion (CRRA) with the increase in cognitive ability in the
four patterns of behaviour observed in the prospect theory view of risk aversion, along
with references to field studies that support the prediction in the particular quadrant.(HP

- High Probable, LP- Low Probable, G- Gain, L- Loss )

We outline the expected relationship between cognitive ability and risk aversion in Fig-

ure 1.2, where we consider the source of risk preference lies in the over-weighting of low-

probable lottery outcomes. The papers referenced in the figure show evidence consistent
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with the prediction relevant for each quadrant. Thus, convergent evidence across studies

suggests a relationship between cognitive ability and probability distortions.

In this report, we present sampling-based model of probability judgment for risky prospects

that illuminates the relationship between cognitive ability and probability distortions. We

explain the theoretical details of the model in the next chapter.



Chapter 2

Probability by sampling

According to prospect theory, when given a choice between risky prospects, people behave

as if they were constructing a subjective probability estimate w(p) based on the provided

prospect risk p. If we consider this process hypothesis seriously, we should ask: how

do people associate p to w? We propose that they do this by sampling from mental

simulations, which have recently proven to be successful in explaining people’s perception

of physical situations [27], as well as biases in probability judgments [35]. Suppose, for

example, when given a choice between risky prospects, people attempt mentally to simulate

the lottery. And every simulation run will yield one of the payout options of the lottery.

Multiple simulations of the lottery end up with different results. The frequencies of the

payout options from the accumulated sample of lottery results from the mental simulations

may inform the subjective probability estimates of Risky prospects.

Focusing on probability judgments for evaluating binary prospects, for simplicity, our

probability-by-sampling model assumes that,

1. Observers possess a veridical, possibly noisy, internal probability scale.

2. When asked to reflect on a risky binary prospect, observers sample multiple abstract

lotteries parameterized by the prospect risk, as read off the internal scale.

3. The outcomes of these simulated lottery draws are stored in working memory.

4. Observers sample from the lottery until either working memory capacity is reached1,

or both prospects have occurred at least once during sampling.

1If memory sampling fails to retrieve a sample of the low probability outcome by the time capacity is
reached, the model returns a probability of 0.01 for the low probability outcome.

6
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5. Observers read out the average occurrence of the salient option as their subjective

probability estimate for it.

Of these assumptions, #1 follows standard psychophysical premises, #2 is the key sampling

assumption of our approach, #3 follows standard assumptions about the role of working

memory made in nearly all symbolic cognitive architectures [32], #4 is a novel assumption

made based on the indicator variable ’counting predictor’ from [28]. By definition, the

counting predictor is the sample count at which all possible options have occurred at least

once while sampling, which substantially improved the sampling duration predictions in

a decision from experience paradigm [28] and #5 is standard. Thus, the novelty of our

model lies in assumptions #2 and #4.

Formally, where Im is an indicator function that takes the value 1 if the low probability

outcome is sampled in the mth memory slot, and 0 otherwise. Also, M represents the set

of memory slots in working memory filled up at the time w(p) is read out (up to maximum

capacity), which in turn is determined by the number of samples it takes to see two distinct

outcomes during sampling.
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Figure 2.1: Subjective probability judgments were extracted from the probability-by-
sampling model for cohorts of 1000 observers sampled from low (blue) and high (red)

working memory capacity pools.
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We conducted an in silico experiment, by sampling 1000 probability-by-sampling observers

with working memory capacities sampled from normal distributions with means µlow =

5, µhigh = 10 and SD = 1. Observers from low and high Working memory capacity groups

responded to binary prospects across all possible probability values (quantized in steps of

0.01), producing subjective probability estimates for all these values. Figure 2.1 plots the

average of these estimates for both WM size groups.

There are two important observations. One, we see that probability-by-sampling observers

produce an inverse-S shaped distortion of probabilities [30], based only on the retrieval

stage assumptions. This is consistent with the empirical evidence that people can re-

produce probabilities veridically in some elicitation formats [29, 15]. And two, we note

that the high WM group shows greater probability distortion than the low WM group.

These observations remain consistent across multiple numeric values of our simulation

parameters, but with working memory sizes greater than 12 probability distortions fade

away.

Let’s consider the prospect ”20% chance of winning Rs.500 otherwise, you win nothing” to

understand why the probability-by-sampling model generates inverse S-shaped probability

distortions. As the probability-by-sampling observers sample simulated outcomes until

they see both outcomes at least once, and then average over the outcomes to read out the

lower probability, there are two possibilities. Either they do not sample the low probability

option, or they will sample the low probable outcome once and terminate sampling. In our

example, for working memory size 4, the probability that the low-probable outcome(20%

chance of winning Rs.500) will not be sampled is 0.84 = 0.409 2, so the readout probability

by the observer will be 0 less than 50% of the time. So, for more than half the time, the

low probable outcome is sampled, and the read-out value will be inflated, for example, if

the observer has sampled the following sequence of outcomes [H - 1, L - 0](where H be the

high probable outcome, represented as 1 and L be the low probable outcome, represented

as 0), the readout probability will be (1 + 0)/2 = 0.5, as the observer terminates the

sampling process since it has seen both the outcomes. Averaged across the population,

this asymmetry yields the probability of over-weighting.

Similarly, for large working memory sizes, let’s say 8, the chance of not sampling the low

probability outcome at least once reduces still further to 0.88 = 0.17. In 83% of cases (1 -

0.88 = 0.83), the observer will sample the low-probability outcome at least once and read

out a subjective probability estimate equal to or greater than the objective probability.

2If p is the probability of an event, then the probability of the event occurring x times in a binomial
experiment, of n trials is nCx ∗ px ∗ (1− p)x
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And a number of instances where readout probability values as zero are much lower for

high working memory observers than low working memory observers. Averaged across

observers, this leads to a greater probability of over-weighting for high WM observers.

We calculated the slope of linear transformation γ for the observed average read-out prob-

abilities corresponding to the population of observers and true probability values, from

Equation 1.1. Figure 2.2 shows the slope of linear transformation γ ( also represents

the magnitude of probability distortions) decreases with working memory size. This in-

dicates that the high WM group shows greater probability distortion than the low WM

group(lower γ higher the distortions).
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Figure 2.2: This figure plots the relationship between the slope of a linear transfor-
mation (γ) vs working memory size, obtained by simulating 200 observes with working
memory capacities ranging from 4 to 8. The mean and the standard deviation for the
slope parameter are calculated by constructing a sample of gamma fits by conducting

simulations multiple times, in this case we ran simulations for 30 times.

To summarise, the key novelty of the probability-by-sampling account of probability dis-

tortions is the assumption that observers mentally simulate lottery outcomes until they

have seen at least one instance of both lottery prospects. The model demonstrates the

inverse S-shaped distortion of probability judgments, using only retrieval-stage assump-

tions. And it indicates a clear relationship between working memory size and probability

distortions, i.e. greater working memory capacity should lead to greater overweighting of

small probabilities. Based on this relationship between cognitive ability and probability
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distortions, we outline the expected relationship between cognitive ability and risk aver-

sion in Figure 1.2. We conducted an experiment with human participants to verify our

predictions. In the next chapter, we discuss the experimental procedure in detail.



Chapter 3

Methods

While previous studies partially support the existence of the fourfold pattern illustrated

in Figure 1.2, differences in protocols, analysis methods and operationalization of both

independent and dependent variables make it difficult to assess the net weight of the

evidence. To address this concern, we conducted an experiment to measure risk aversion

as the CRRA coefficient of isoelastic utility functions in certainty equivalence problems

selected to represent each of the four quadrants(HPG, LPG, LPL and HPL) for participants

with different cognitive ability levels, as measured by RSPM (Raven’s Standard Progressive

Matrices). We expected to see the specific relationship pattern between cognitive ability

and risk aversion, as predicted in Figure 1.2 as the outcome of this experiment.

3.1 Subjects

We invited participants via email and social media. 156 participants (58 female, 98 male)

responded and provided consent for participation. Out of 156 participants who appeared

for the IQ test, 122 participants (47 female, 75 male) expressed interest in participating

in the online risk-preference study. The mean age of the participants was 23.83 years.

Since this was a between-subject design, participants were assigned to one of the four

quadrants randomly at the time of experiment participation. All experimental protocols

were approved by an Institutional Review Board. Participants signed a consent form

describing all experimental procedures before participating in the study. Each participant

was compensated for their time.

11
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3.2 Measuring cognitive ability

It is well-known that working memory capacity is strongly correlated with general cognitive

ability, as measured by progressive matrices tests [12]. So to measure cognitive ability,

we used Raven’s Standard Progressive(SPM) Matrices [24] containing 60 questions. We

designed a website to administer the test online. Participants were shown puzzles from

SPM one by one on the screen with corresponding options. They had to answer the

puzzles by clicking one of the options. The raw scores (number of correct responses)

obtained for each participant were converted to standard SPM percentiles using the SPM

manual. There was no time limit for the test. Out of 122 participants, four participants

whose SPM’s standard score was 5 were excluded from analysis since their test duration

was less than six minutes for 60 questions, suggesting random responses leaving us with

118 participants(44 female, 74 male) for the risk preference experiment. Participants were

assigned randomly to the four quadrants of the experiment, and the breakdown is given

in the below table. The average time to complete the IQ test by the participants was

35.06min, and our sample’s average SPM percentile score was 62.7, suggesting that it was

representative.

Table 3.1: Participants count in all quadrants.

Quadrant Participant Count

HPG 30

LPG 25

LPL 35

HPL 28

Table 3.1 documents the participant count for all four quadrants.

3.3 Measuring risk preference

We measured risk preference for each participant using a choice table, which had 20 rows.

Every participant provided their preference for each row of the table.[7]. The choice tables

used, follow the ones used in Dohmen et al..
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Table 3.2: Sample choice table, from high probable gain quadrant

Lottery Prospect Accept the safe amount

1 90% chance of winning amount 16,200 10100

2 90% chance of winning amount 16,200 10400

3 90% chance of winning amount 16,200 10700

4 90% chance of winning amount 16,200 11000

5 90% chance of winning amount 16,200 11400

6 90% chance of winning amount 16,200 11700

7 90% chance of winning amount 16,200 12000

8 90% chance of winning amount 16,200 12300

9 90% chance of winning amount 16,200 12700

10 90% chance of winning amount 16,200 13000

1 1 90% chance of winning amount 16,200 13300

12 90% chance of winning amount 16,200 13600

13 90% chance of winning amount 16,200 14000

14 90% chance of winning amount 16,200 14300

15 90% chance of winning amount 16,200 14600

16 90% chance of winning amount 16,200 14900

17 90% chance of winning amount 16,200 15300

18 90% chance of winning amount 16,200 15600

19 90% chance of winning amount 16,200 15900

20 90% chance of winning amount 16,200 16000

Table 3.2, a sample choice table, belongs to the High Probable Gain quadrant,note that

the expected value of the gamble matches the safe amount at 15th row (0.9 ∗ $16, 200 =

$14, 580 ≈ $14, 600). The lottery amounts and payoffs for all the choice tables were derived

from Frederick study 1 and then converted to equivalent local currency by considering

Purchasing Power Parity in 2005 and inflation (2005-2021). The lottery amount remained

the same while the safe option increased systematically for every row; a rational agent

would be willing to take risks until the safe amount is less than the expected value of the

gamble and then switches to the safe option. We ensured the safe amount matches the

expected value of gamble at 15th /16th row in all choice tables. we followed [7], where the

safe amount crosses the expected value of the gamble at 15th row.
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For gain-based problems, we asked the participants to choose whether to buy a lottery

ticket that could fetch them lottery money with some uncertainty or accept the safe

amount. Each quadrant had a set of five choice tables with different lottery amounts

and payoffs. The choice tables in these quadrants represent either high probable or low

probable gain conditions. The order of the choice table presented to each participant was

randomized. We presented participants one row at a time and asked to choose whether

’to buy the lottery ticket (risky)’, which can fetch them a lottery amount with some

uncertainty, or ’Not to buy the lottery ticket (safe)’ and accept the safe amount.

Once the participant switched from the risky option to the safe option, the algorithm asked

the participant whether they would accept all higher safe amounts or not (see also [7]) if

they responded yes, the algorithm considered all other safe options in the table as their

preferences, and the participant was progressed to the new choice table. Otherwise, the

participant had to decide on the rest of the table manually and then be presented with a

new choice table. Following Dohmen et al., we also informed participants that one row

from one of the five-choice tables would be randomly selected, and they would be rewarded

with the amount proportional to the choice they made in that selected row to encourage

participants to choose according to their true preferences for each row.

The same procedure was used for loss-based problems, except that the problems were

framed as a choice to buy insurance costing a small fixed amount or retain a small prob-

ability of suffering a larger loss. And here, the uncertain loss amount remained the same

while the insurance premium decreased systematically for every row; a rational agent

would be willing to take risks until the insurance cost is greater than the expected value

of the gamble and then switches to the insurance cover. We ensured the insurance cost

matches the expected value of gamble at 15th /16th row in all choice tables. we followed

[7] study, where the safe amount crosses the expected value of the gamble at 15th row.

Out of 590 instances(118 participants * 5 choice tables), there were 16 incidents where par-

ticipants switched from a risk option to a safe option multiple times. The sixteen instances

can be classified into two scenarios. Scenario-1, they selected safe options consecutively.

One example, a participant switched from a risky option to a safe option at 10th row and

selected a safe option again in the next rows(11,12) and then moved to the next choice

table. We considered the first switch (in this example, 10th row) as their risk preference.

And in scenario -2, they switched from a risky option to a safe option and again selected

the risky option, then switched to a safe option. One example, a participant switched

from a risky option to a safe option at 4th row and then selected the risky option in the

5th row and continued the risky option till row 10 and switched to a safe option at 11th
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row. Here we considered the latest switch( here row 11) as their risk preference. And in

another example, a participant switched from the risky option to a safe option at 4th row

and then selected the risky option in the 5th row and continued the risky option till the

end of the table. Here we considered the last row(20th row) as their risk preference.

The coefficient of relative risk aversion(CRRA) was calculated from an individual’s utility

function [4]. We follow Burks et al. in assuming that the participant’s utility for the lottery

would be at the midpoint of safei and safej . (where ’i’ and ’j’ refers to the steps when

the participant prefers to take the risk at safei, but switches to the safe option at safej .).

The individual’s utility function is then given by,

u(c) =
c1−σ

1− σ
, (3.1)

where σ is the CRRA coefficient, we are interested in measuring.

Following Burks et al. and assuming expected utility maximization, the equation below

holds when a participant switches their lottery preference between cells i and j of the

table and is solved analytically for lottery utility and then numerically for σ to obtain the

coefficient of relative risk aversion,

p u(lottery) = 0.5u(safei) + 0.5u(safej), (3.2)

where p corresponds to the stated probability of winning the lottery. The same procedure

was used to estimate CRRA in loss conditions as well.

We calculated CRRA for every row in all twenty choice tables(4 quadrants * 5 choice tables

) using a numerical solver, we capped CRRA values to avoid large numbers. Figure 3.1,

plots CRRA values for every choice table in all quadrants, as we move down the table, the

CRRA values decrease, indicating a more risk-seeking nature.
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Figure 3.1: This figure plots, how CRRA changes as we move down a table, for every
choice table in all quadrants.
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Results

The mean CRRA estimates for all five choice tables seen by participants in each quadrant

are shown in Figure 4.1. In every quadrant, for each choice table, we found the best

fit line relating CRRA to IQ. To obtain a summary measure of the trend across choice

tables for each quadrant, we shifted the CRRA points from each choice table to a common

intercept (the average intercept across the best fit lines). We then replotted the points

using individual slope values from the table-wise best fit lines. Finally, we fitted a linear

regression to the combined CRRA estimates (see the rightmost column in Figure 4.1).

Table 4.1: Average slope in all quadrants.

Quadrant Sign Prediction Coefficient p f2

HPG + 0.31 0.03 0.17

LPG - -0.03 0.03 0.17

LPL + -0.21 0.09 0.1

HPL - -2.41 0.000008 1.06

Table 4.1 documents the slope value of the combined regression for all four quadrants,

alongside the predicted coefficient sign, as seen in Figure 1.2. We note that the measured

coefficients are directionally consistent with our predictions in three of four quadrants.

Results for three quadrants (high probability gains, low probability gains and high prob-

ability losses) were statistically significant at the traditional 0.05 alpha-error level and

displayed medium effect sizes (f2 > 0.15) [5]. For the low probable loss quadrant, we see

small effect sizes (f2 > 0.02), with the relationship failing to meet statistical significance.

17
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Figure 4.1: This figure plots the relation between CRRA vs IQ for every choice table
in all the quadrants and the average plot to show the overall trend in a quadrant.

To verify that the observed relationships between cognitive ability and risk preference are

not an artefact of our data pooling procedure across choice tables, we fit a hierarchical

linear regression model for every quadrant separately. We model the relationship between
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CRRA and IQ in each quadrant as follows

CRRAi = slopei ∗ IQ+ intercepti + ϵ

slopei ∼ N (µslope, σ
2
slope)

intercepti ∼ N (µintercept, σ
2
intercept)

ϵ ∼ HalfCauchy(5)

where slopei, intercepti are the slope and intercept parameters for the choice-table ’i’ in a

quadrant and ϵ is noise. We used Gaussian and half-Gaussian priors, respectively, for our

two mean and two standard deviation hyperparameters.

5.0 2.5 0.0
slope

-4.2  -0.7
95% HDI

mean=-2.42

HPL

1 0 1
slope

-0.25  0.85
95% HDI

mean=0.34
HPG

1.0 0.5 0.0 0.5
slope

-0.56  0.15
95% HDI

mean=-0.2
LPL

0.0 0.5
slope

-0.21  0.15
95% HDI

mean=-0.03

LPG

Figure 4.2: This figure plots the posterior distribution for the mean distribution from
which slopes of all quadrants are sampled with 95% credible intervals.

We fit this model using PyMC3’s NUTS sampler using 2 chains of 2000 draw iterations with

1000 tuning steps. The key parameter of interest for us is the mean of the distribution of
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µslope from which slopes for different choice sets are sampled. Figure 4.2 plots the quadrant-

wise posterior distributions for µslope from the fitted model. The key observation is that

the MAP estimates of µslope reliably track the average slope estimates we obtained in our

pooled analysis, suggesting that the pattern seen in the previous analysis is not an artefact

of the data pooling procedure.
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Discussion

In this work, we presented a sampling-based probability judgment model for risky prospects

based only on retrieval-stage assumptions. The model demonstrated the inverse S-shaped

distortion of probability judgments. And also showed a clear relationship between the

working memory size and probability distortions, i.e. greater working memory capacity

should lead to greater over-weighting of small probabilities. And further predicted a

pattern of the relationship between cognitive ability and risk aversion in the fourfold

pattern of risk attitudes. The model’s predictions are consistent with the empirical results

in three of four quadrants (HPG, LPG and HPL) and with earlier empirical studies of

the relationship between cognitive ability and risk preference [11, 4, 7]. Andersson et al.

proposed that the relationship between cognitive ability and risk aversion is spurious,

and the direction of correlation depends on the behavioural noise and the biased risk

elicitation method. In the current study, all the choice tables in every quadrant are biased

in the same direction, yet we still see a positive and negative correlation between cognitive

ability and risk aversion. This suggests that the relationship between cognitive ability and

risk aversion does not depend solely on the bias in the risk elicitation method and the

behavioural noise. However, the model’s prediction for the low probable loss quadrant is

directionally inconsistent with the participant’s data, and the observed correlation between

cognitive ability and risk preference also failed to meet statistical significance. Further

work is needed to verify it.

While the previous models of probability distortions [10, 9] that use retrieval-specific

assumptions are context- and task-specific models. The probability-by-sampling model,

oriented towards prospect risk in our presentation, can be extended to other tasks eas-

ily. Considering the frequency estimation task, we need to assume that observers need to

21
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sample tokens until they sample the one they are estimating the frequency of for once,

and then average across the token count to produce a frequency estimate. And also,

the other previous models of probability distortions [13, 33], based on encoding-based

assumptions, are inconsistent with the empirical evidence [15] that people can repro-

duce probabilities veridically when these are elicited using graphical methods. Whereas

Probability-by-sampling is a task-general retrieval-based model of probability distortions,

able to accommodate the possibility of veridical encoding of frequency information [17]

and the possibility of near-veridical retrieval of probability information using non-symbolic

elicitation procedures [15].



Bibliography

[1] Ola Andersson, H̊akan J Holm, Jean-Robert Tyran, and Erik Wengström. Risk aver-

sion relates to cognitive ability: Preferences or noise? Journal of the European

Economic Association, 14(5):1129–1154, 2016.

[2] Bhanu Prakash Ankoju and Nisheeth Srivastava. Sampling-based probability con-

struction explains individual differences in risk preference. In Proceedings of the An-

nual Meeting of the Cognitive Science Society, volume 44, 2022.

[3] Nicholas C Barberis. Thirty years of prospect theory in economics: A review and

assessment. Journal of Economic Perspectives, 27(1):173–96, 2013.

[4] Stephen V Burks, Jeffrey P Carpenter, Lorenz Goette, and Aldo Rustichini. Cognitive

skills affect economic preferences, strategic behavior, and job attachment. Proceedings

of the National Academy of Sciences, 106(19):7745–7750, 2009.

[5] Jacob Cohen. The effect size. Statistical power analysis for the behavioral sciences,

pages 77–83, 1988.

[6] Joshua R De Leeuw. jspsych: A javascript library for creating behavioral experiments

in a web browser. Behavior research methods, 47(1):1–12, 2015.

[7] Thomas Dohmen, Armin Falk, David Huffman, and Uwe Sunde. Are risk aversion

and impatience related to cognitive ability? American Economic Review, 100(3):

1238–60, 2010.

[8] Jacques Dutka. On the st. petersburg paradox. Archive for History of Exact Sciences,

39(1):13–39, 1988.

[9] Craig R Fox and Yuval Rottenstreich. Partition priming in judgment under uncer-

tainty. Psychological Science, 14(3):195–200, 2003.

[10] Craig R Fox and Amos Tversky. A belief-based account of decision under uncertainty.

Management science, 44(7):879–895, 1998.

23



Bibliography 24

[11] Shane Frederick. Cognitive reflection and decision making. Journal of Economic

perspectives, 19(4):25–42, 2005.

[12] Keisuke Fukuda, Edward Vogel, Ulrich Mayr, and Edward Awh. Quantity, not quality:

The relationship between fluid intelligence and working memory capacity. Psycho-

nomic bulletin & review, 17(5):673–679, 2010.

[13] Samuel Gershman and Robert Wilson. The neural costs of optimal control. Advances

in neural information processing systems, 23:712–720, 2010.
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